Gurgen Askaryan

Inventor of the Askaryan effect

Gurgen Ashotovich Askaryan was a prominent Soviet – Armenian physicist, famous for his discovery of the self-focusing of light, pioneering studies of light-matter interactions, and the discovery and investigation of the interaction of high-energy particles with condensed matter.

Biography

Gurgen Askaryan was born in 1928 in Moscow, Russia to Armenian parents. Both parents were doctors: father Ashot Askaryan, was a general practitioner, and his mother Astgik Askaryan was a dentist. At the age of 18 Gurgen entered the Department of Physics at the Moscow State University, where he started his first research project specializing in the physics of atomic nuclei. Graduated in 1952 and was accepted to the graduate school at the Institute of Chemical Physics (ICP) in Moscow. In 1953, he was transferred to the Lebedev Institute of Physics, and graduated with PhD in 1957. An author of over 200 articles, Askaryan made a significant contribution to the field of high energy physics, acoustics, and optics. For his famous discovery of the self-focusing of light, he received the highest scientific award at the time in Soviet Union. Shortly after receiving a degree of the Doctor of Science in 1992, Gurgen experienced health problems, which were also accompanied by worsening of his sister Gohar’s health. He and his sister died the same day on 2 March 1997 in their apartment in Moscow, both because of similar heart disease.

Scientific career and achievements

Missed Nobel Prize

During the third year of his education G. Askaryan proposed a new method of registration of fast charged particles. His idea was the following. Suppose, there is an overheated transparent liquid. A very small amount of energy is sufficient to make it boil. Let a fast charged particle penetrate through this overheated liquid. The particle expends its energy on ionization of atoms located near its trajectory. This energy loss is transformed into heat in amount which is sufficient to induce boiling along particle’s trajectory. Then the trajectory becomes observable because many bubbles are created along it.

G. Askaryan discussed this proposal with some of his teachers and fellow students. No one objected. However, no one supported him, no one helped to realize the idea. G. Askaryan then was inexperienced in forms and methods of scientific investigation. He even did not publish his proposal. Several years later, in 1952, the same idea was set forth independently by an American physicist Donald Arthur Glaser. He put the idea into practice having assembled the device known now as bubble chamber. This instrument proved to be so useful in high energy physics that D. A. Glazer was awarded with the Nobel Prize in 1960. This event gave rise to Askaryan’s deep concern. Of course, he was shaken that Nobel Prize was so near and, so to say, he let it slip. On the other hand, this event helped him to get faith in himself.

Askaryan effect

The Askaryan effect, which was theoretically predicted by Askaryan in 1962, describes a phenomenon, similar to the Cherenkov effect, whereby a particle travelling faster than the speed of light in a dense radiotransparent medium such as salt, ice or the lunar regolith produces a shower of secondary charged particles which contain a charge anisotropy and thus emits a cone of coherent radiation in the radio or microwave part of the electromagnetic spectrum. This phenomenon is of primary interest in using bulk matter to detect ultra-high energy neutrinos.

share this:

Facebook
Twitter
LinkedIn
Telegram
WhatsApp
Email

Still hungry? Here’s more

Ardem Patapoutian

Ardem Patapoutian (born 1967) is an Lebanese-American molecular biologist, neuroscientist, and Nobel Prize laureate of

Read More

Noubar Afeyan

Inventor of Covid vaccine Noubar Afeyan is an American-Canadian entrepreneur, inventor, and philanthropist. He is best known for

Read More